

On the cover: Rainstore³ chamber under parking lot, Broomfield, CO. Without Rainstore³'s high water storage capacity at shallow depths, the flexibility in design, and the convenience of exfiltration, the owners of this site would have been unable to develop this site and would have been forced to find a different location for their new construction.

Above: Two views of a completed RS³ install under a parking lot in Big Fork, MT. Parking lot and off-street bays for approximately 48 cars, drains into a 26,250-gallon Rainstore³ stormwater detention structure. Diagonal parking is graded toward the center concrete strip, which drains toward the catch basin.

Below: Graphic representation of asphalt parking lot with Rainstore³ detention showing individual components. Drawing not to scale.

NOW IT IS POSSIBLE!

Invisible Structures, Inc., (ISI) has created a new class of subsurface water storage system, Rainstore³ (RS³). It is not pipe or arched chamber, but a structure with strength throughout its shape. The unique design places the plastic entirely in compression rather than bending or tension, resulting in an excess of H-20 loading, and high void storage volume of 94%! Minimum cover is only 0.3 meter (12").

The structure can be as shallow as 0.1 meter (4'') or as deep as 2.5 meters (94''), and with any length and width in 1 m (40'') increments. Rainstore³ eliminates site restrictions by conforming to custom project requirements.

RS³ does not require any stone backfill between structures. Calculating the void (storage) volume is as simple as dividing storage demand by 94%. This means significant savings in amount of excavation, soil transport, imported stone, installation time, and labor.

Rainstore³ can be utilized for long-term water storage for irrigation, fire protection, and potable applications by encasing the structures in an impervious liner.

Porous lining materials around $\rm RS^3$ offer 100% surface area coverage for water infiltration/exfiltration.

STORMWATER QUALITY IS OLD BUSINESS

Company Background and Product Line

Invisible Structures, Inc., has been in the stormwater management business since 1982 with our porous paving systems Grasspave² and Gravelpave², ring and grid structures for grass and gravel drivable surfaces. Large rolls sizes cover areas quickly while either protecting grass roots from compaction or containing small gravel to eliminate gravel migration. These products have extensive design brochures that cover all aspects from project photographs to latest technology and specifications. Check our web site www.invisiblestructures.com for a full display of information and downloadable details.

Draincore² (DC²) collects excess irrigation and rainfall from recreational grass surfaces such as lawns, sports fields, and bio-swales, and transports filtered water to RS³. This water may be recycled for irrigation or other uses. Draincore² conveys water in a shallow horizontal plane, eliminating trenching and backfill requirements of pipe.


Slopetame² (ST²) is a three dimensional soil, vegetation, pre-vegetation containment mat used to reduce soil loss due to water erosion on slopes, river banks, channels, and bio-swales. Crossbars between rings serve to prevent rill erosion. ST² provides support for grasses and a variety of plant material whose roots furnish natural fibrous anchorage. ST² bio-swales will help clean debris and pollutants from stormwater prior to entering Rainstore³.

 RS^3 evolved from the ring and grid concept by allowing stackability to greater depths, and increased lateral compressive strength to resist deep soil pressures. The 94% void capacity was attained for RS^3 while satisfying structural criteria.

Above: Nearly completed installation of a stormwater detention system at a gas station in Nampa, ID. This site has three separate Rainstore³ chambers to provide the necessary water storage. This photo shows the catch basin and curbing for one of the chambers. Asphalt will cover the visible gravel base.

Below: Installation of a water harvesting application in Santa Fe, NM at the Santa Fe Greenhouse. Rain water is captured and re-used for irrigating the greenhouse plants - saving on the cost of using city water.

Water Quality Background

Water quality is critical and must be considered when dealing with stormwater management. In the past, point-source pollution (contaminates from a concentrated source) was of primary concern. Today, non-point source pollution (contaminates from a large area such as a parking lot) is important due to its magnitude and frequency.

The EPA has regulated point source pollution for years and is now implementing strict regulations to control non-point source pollution, which is cumulative and presents long term negative impacts upon our water resources.

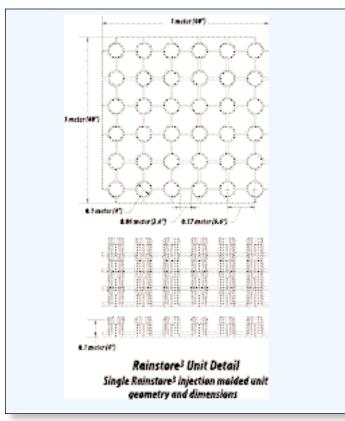
Stormwater traveling across hard surfaces will collect contaminates from hydrocarbons to solid waste. The most effective pollution control incorporates treatment at the point

of origin before reaching community waterways or water tables.

In nature, stormwater percolates into vegetated and non-vegetated areas where suspended solids are filtered and many chemicals neutralized. Research has shown that hydrocarbons are consumed by bio-organisms found in the root zone without killing the vegetation.

Invisible Structures' porous pavement and bio-swale products provide one of the most effective means of removing pollutants at the source. Refer to Sand-Bio Filter Inlet Detail for ways to reduce or eliminate catch basins and elaborate cleaning systems. Rainstore³ in combination with ISI's other outstanding products provide a complete stormwater management package.

PRODUCT DESCRIPTION Basic Structure


Rainstore³ is a structure of thin-walled cylindrical columns injection molded of recycled resins of either high impact polypropylene (HIPP), or high density polyethylene (HDPE) plastic for strength, durability, and green industry benefit. For potable water storage, virgin plastic is used. Cylinders are 10 cm (4") diameter, 5mm (0.2") average wall thickness, 10 cm (4") tall, and spaced 16.7 cm (4.6") apart. T-shaped beams connect the cylinders and resist external lateral soil/water pressure. Compression fit-

> tings between layers create a rigid structure for ease of transport and installation. Four archway openings in the bottom of each cylinder

allow water to move

freely throughout assembled columns. A single Rainstore³ injection molded unit weighs 14 pounds and is comprised of 36 cylindrical columns that occupy one square meter $(40'' \times 40'' \times 4'')$. A stack of 10 units will comprise one cubic meter (35.31 cubic feet), with approximately 250 gallons of net water storage. RS³ allows for water containment depths from 10 cm to 2.5 meters (4" to 94" or 8.2'). The following standard depths are stocked: *in meters* (0.2, 0.3, 0.4, 0.6, 0.8, 1.2, and 2.4) *in feet* (0.7, 1.0, 1.3, 2.0, 2.6, 4.0, and 7.9). Custom depths are also available.

Side bumpers provide foolproof, accurate spacing. Structures may be moved by hand. A layer of geogrid, below the cells and above the existing subsoil, provides a stable surface and will insure proper alignment. RS^3 withstands repeated freeze-thaw cycles, will not rust, break down, crack, is not affected by chemicals, extremes of pH, oils, salts, or fertilizers. Ethylene plastics have a projected service life in excess of 100 years provided they are not exposed to UV light.

Overall System

RS³, wrapped with a geotextile filter fabric or geomembrane, and placed side by side in an excavated void create a variety of water storage structures. Inflow, outflow, visual inspection pipes, catch basins, pumps and water filters are installed as needed. Backfilling and compacting the sides, geogrid, base course, and surfacing complete the system.

STORMWATER MANAGEMENT APPLICATIONS

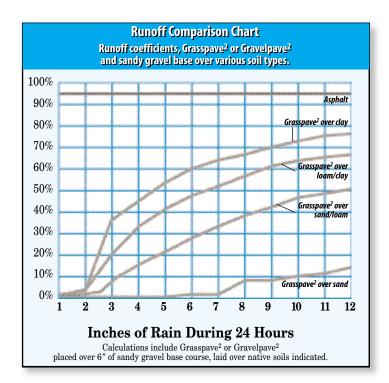
Land development significantly affects the natural course of stormwater. Prior to development, land is semi-porous enabling rainfall to directly infiltrate, which filters pollutants, recharges subsurface water tables, and reduces flooding. Sealing the earth's surface with parking lots, roads, walks, and roofs, results in rapid runoff to storm sewers and rivers, causing flooding and unacceptable pollution of valuable water resources.

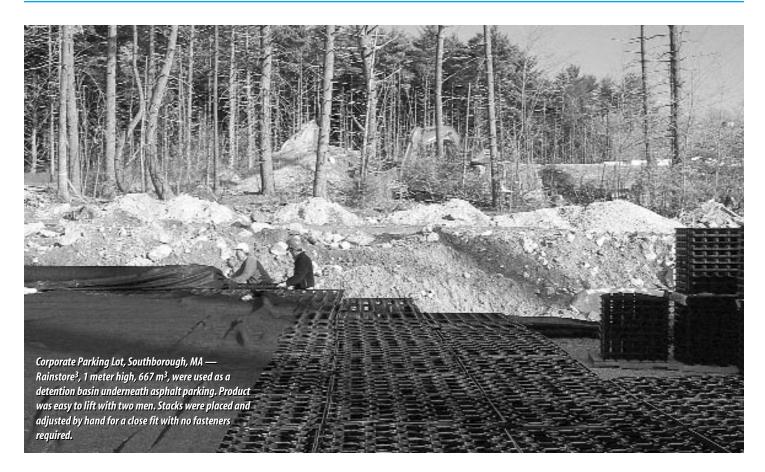
To combat these serious problems, national (EPA) and regional regulatory agencies require all or a portion of stormwater to be managed on site.

Surface detention basins and ponds are common, but often occupy valuable real estate and create safety hazards, insects,

weeds, and odor problems. Increasingly, the most economical and convenient solution is an "underground pond," where the water may be stored temporarily before it is released to a storm sewer (detention), stored until it exfiltrates (retention), or stored for reuse (harvesting).

Porous Paving


The most direct stormwater management technique is to allow the rain to penetrate the surface where it falls. This can be done with Grasspave² or Gravelpave² porous paving. The base course below these plastic reinforcement structures will typically store at least 2.5" of rain, or more, if subsoils are porous. Firelanes and overflow parking areas are frequently used as infiltration basins.


Rainstore³ Detention

Short term storage and releasing stormwater at a predetermined rate through the use of small outlet pipes or pumps is detention. Downstream stormwater facilities may exist but have a limited flow rate capacity. While the water is held awaiting gradual release, it may or may not be allowed to exfiltrate into the site soils. A porous non-woven geotextile is used to encase RS³. Geomembranes are used when exfiltration must be avoided.

Rainstore³ Retention

When downstream stormwater facilities do not exist or the amount of water released from a site is limited for some other reason, stormwater retention is utilized. Typically, there are no outflow pipes. RS³ is encased in non-woven geotextile and placed above porous soil. Replenishing existing aquifers is a benefit.

Water Harvesting

As population centers expand in arid climates, traditional water sources such as rivers and aquifers have been significantly depleted. With increased water prices, it becomes more economical to harvest rainfall with Rainstore³. Also, demands upon ground resources are reduced, making some water critical projects possible. The choice for long term storage with Rainstore³ is influenced by site opportunities and constraints, access to community infrastructure (water, sewer, fire protection), government regulations, and owner principles and guidelines.

Stormwater falling on a site is collected from roofs, bio-swales, and parking areas. A strong impermeable liner surrounding the

Product Performance Analysis					
Performance Criteria	Rainstore ³ 2.5 meter (8.2′) height	Arched Chambers $(34'' \times 75'' \times 16'')$	Corrugated Plastic Pipe (60" dia.)	Corrugated Metal Pipe (72″ dia.)	Concrete Pipe (72″ dia.) Non-perforated
% of excavated volume available for water storage	~75%*	~40%*	~60%*	~53%*	~38%*
% of storage volume occupied by stone	0%	~59%	~60%	~70%	0%
Maximum water storage volume/ surface area	8.2 ft ³ water storage/ft ² surface area	$\sim 1.4 \text{ ft}^3 \text{ water} \\ \text{storage/ft}^2 \\ \text{surface area}$	3.8 ft ³ water storage/ft ² surface area	4.7 ft ³ water storage/ft ² surface area	3.2 ft ³ water storage/ft ² surface area
Chamber depth design flexibility	4" min., 98" max., in 4" increments	12″ min., 30.5″ max.	12" dia. min., 60" dia. max., 6" increments	12" dia. min., 240" dia. max., 6" increments	12″ dia. min., 240″ dia. max., 6″ increments
Cover depth required	12"	18″	12″ – 30″ based on diameter	12" – 24" based on diameter	6″
On-site handling and manual installation	Easy	Easy	Difficult	Difficult	Difficult
Maintenance, inspection, clean-out	Moderate	Moderate	Easy	Easy	Easy
% of chamber surface area available for infiltration	100%	~75%, including side cuts	~15%, based on perforation area to pipe surface area ~15%, based on perforation area to pipe surface area		0%

*Calculations based on an average sized (10 meter × 10 meter) footprint installed per manufacturer's specifications.

chamber prevents evaporation and contamination. The water may be used for landscape irrigation, fire protection, potable applications, and industrial processes, such as water for heating and cooling with geothermal energy transfer. For long term storage, water may require chemical treatment or oxygenation to preserve water quality.

PRODUCT PERFORMANCE COMPARISON

Crushed rock wrapped in geotextile, concrete, corrugated metal or plastic pipe, and plastic arch chambers have been historical subsurface water storage options available to designers. Invisible Structures closely studied the performance of these systems and obtained feedback from engineers and contractors as to what they liked and disliked about available solutions.

With this information, ISI designers developed Rainstore³ which boasts a highly efficient excavated volume, economical installation, reduced stone requirements, improved design flexibility, safety, strength, and exceptional longevity.

DESIGNING WITH RAINSTORE³ Design Steps

1. *Choose system application:* Determine whether porous paving, detention, retention, and/or water harvesting methods will be used. Function will determine whether outflow pipes will be needed, and choice of liner to encase the structures.

2. Determine the location and quantity of storage systems: Pick the most appropriate site location to minimize excavation, grading, and piping — usually downhill from runoff sources. Use soil boring information to determine subsoil conditions and water table depth. Exfiltration requires porosity. Rainstore³ can be located below most landscaped or paved surfaces. It may be desirable to use more than one location for storage.

3. Choose surfacing to be placed above storage structure: RS^3 allows for many different surfacing options — parking, green

Typical Soil Permeabilities					
Soil Group	Typical Coefficient	Inches /Day	Description	Suitable for Exfiltration	
GW	2.5 EE-2	850.4	well graded, clean gravels, gravel-sand mixtures	Yes	
GP	5 EE-2	170.1	poorly graded clean gravels, gravel-sand mixtures	Yes	
SW	>5 EE-4	17.0	well-graded clean sands, gravelly sands	Yes	
SP	>5 EE-4	17.0	poorly graded clean sands, sand-gravel mix	Yes	

Note: The following soil groups are not suitable for exfiltration (silty, clayey soils): GM, GC, SM, SM-SC, SC, ML, ML-CL, CL, OL, MH, CH, OH.

space, recreation, landscaping, and light weight buildings. Landscaping directly above a storage structure should be restricted to shallow rooted materials such as grasses, groundcovers, and low growing shrubs. Long term chemical root barrier materials are available if RS³ must be kept root free.

If parking is the surface use, then choose between porous paving and hard surface options. Grasspave² and Gravelpave² filter stormwater directly by allowing percolation through the parking surface and base course into RS^3 without the use of pipe.

4. *Determine required capacity:* Local regulating agencies establish rainfall storage requirements. Calculate by multiplying the hard surface area (roads, parking lots, walks, roofs, etc.) by the "design rainfall" required, then by the runoff coefficient (refer to Runoff Comparison Chart on page 3). Determine supplemental storage requirements for irrigation, process, fire safety, or potable uses, and add to regulated storage demand.

5. Determine quantity of Rainstore³: Convert the storage requirement to cubic meters, divide by 0.94 to determine volume of Rainstore³ in cubic meters. Gallon storage reference is 1 m³ of water = 264 gallons \times .94 = 250 gallons/m³ RS³.

6. Depth of Rainstore³: Factors such as depth of water table, bedrock and available excavation area affect the optimal depth of retention/ detention capability. Choose a RS³ bottom elevation that is higher than the water table maximum level. In cases where surface area is very limited and storage volume is great, deeper structures are usually more cost effective. Include 12" of gravel fill and surfacing cover in the decision. The Rainstore³ cells are assembled to the desired depth prior to shipment. The following depths are available to avoid additional shipping costs: *in meters* (0.2, 0.3, 0.4, 0.6, 0.8, 1.2, and 2.4), *in feet* (0.7, 1.0, 1.3, 2.0, 2.6, 4.0, and 7.9).

Provide an appropriate safety factor when depth of structure is near the maximum water table level because water rising into RS³ reduces storage volume. Please refer to the Product Description section for standard and custom depths.

7. Choose the length and width of Rainstore³: Having already chosen RS^3 depth, pick the length and width that occupies the required volume of RS^3 (L \times W = V/height). Adjust length or width as necessary to meet site criteria. The length and width must be in full meter increments.

8. Determine catch basin and inflow locations: All water entering the Rainstore³ structure must be reasonably silt and debris free to minimize maintenance and extend the system's useful life. The preferred filtration method is a sand or bio-filter constructed with Gravelpave² or Grasspave² (refer to Sand/Bio-Filter Inflow Detail). A catch basin or other structural means may also be used. Choose an inflow location that best suits site conditions and minimizes waterborne debris. Standard pipe made of PVC, HDPE, steel, concrete, tile, copper, or any other material may be used to convey water to or away from Rainstore³.

9. Determine outflow locations (if necessary): For gravity fed outflow, ensure that site topography allows the outflow pipe to travel to a lower elevation stormwater facility. Size the pipe to limit outflow to the desired rate. If gravity outflow is not possible, pumps may be used (refer to Water Harvest or Maintenance Port Details). A fail safe power supply is essential if outflow pumps are used.

10. *Select Rainstore³ liner*: First, choose between permeable and impermeable. Non-woven filter fabrics are typically used except when water harvesting or stormwater exfiltration is prohibited by regulation.

Acceptable impermeable liners are at least 40 mil PVC or equal. Permeable liners must be at least 8 ounce non-woven. Properly match fabric pore sizes to surrounding soils to prevent clogging and blinding. Fabric seams must have a 24" minimum overlap unless sewn.

To make pipe connections to geotextile fabric, cut an "X" in the fabric, insert the pipe, gather fabric, and fasten tightly with a pipe clamp. If using a geomembrane, construct a "boot" of material and bond it to the circular opening. Insert the pipe through the boot and fasten with two pipe clamps (refer to the Water Harvest Detail).

11. Determine quantity of geogrid: Three layers of geogrid (Tensar BX1200, Tenax MS330, Huesker Fornit 30 or equivalent) must be placed. One layer on the soil below the RS³ (see step 12), one layer directly on top of the RS³ cells — to stabilize with adjacent cells and to provide a walking surface — and the final layer placed on fabric-encased chamber and extended 0.5 meter (20") beyond the sides of the structure.

12. Compute length, width, and depth of excavation: Excavation must extend at least 0.5 meter (20") beyond all sides of RS³ structures to allow for ease of product installation and backfill compaction with powered compactor. Soil below RS³ must be leveled with minimal compaction. A layer of geogrid (Tensar BX1200, Tenax MS330, Huesker Fornit 30 or equivalent) must be placed on the subsoil and extended 0.5 meter (20") beyond the sides of the structure. Large and deep storage volumes may demand a drivable access route for excavation, leveling, compaction and placing Rainstore 3 structures.

0.3 meters (12") minimum, 0.9 meters (36") maximum, structural base course (no greater than 1" particle size) must cover the geogrid and extend past all RS³ sides by 0.5 meter (20"). Compact this layer to a minimum of 95% modified Proctor density.

Native excavated soil or imported structural backfill may be used along the sides of the structure as long as a 95% modified Proctor density is achieved. Compact in lifts as needed to attain proper compaction. Water saturated backfill should not be used as it is difficult to compact and creates excessive hydrostatic pressure on bottom sides of RS³.

Warning: Take extreme care when driving and/or compacting over the chamber and do not drive over exposed Rainstore³ units wait until ALL the units are installed, the side backfill is complete, fabric and geogrid layers are completed, and an adequate amount of cover material is placed. Mark area to identify chamber location.

13. *Choose maintenance port locations:* Check local regulations proper size and placement of maintenance ports. An inside corner section of Rainstore³ may be removed to create a suitable opening for inspection and inserting cleanout pumps. (Refer to the Maintenance Port Detail.)

MAINTENANCE OF A RAINSTORE³ STORMWATER STORAGE CHAMBER

Invisible Structures, Inc. recommends that stormwater be pretreated prior to discharging into the chambers to avoid foreign matter accumulation inside the chamber. This can be accomplished by a variety of techniques or products. Some examples are:

Short Term Storage (Detention Basin) "Zero" Maintenance — the Preferred Method

Use a natural, or "Bio-Filter," inlet device — essentially a porous pavement or swale, to pre-filter trash and sediment laden runoff before capture and conveyance into a Rainstore³ chamber. Use of a simple 10-12" deep sand, or sand/gravel, filter pavement or swale will provide adequate vertical flow capacity (20 to 35+ inches per hour) and residence time to capture coarse debris and trash at the surface, with sediment and hydrocarbons (and even most traffic generated metals) kept in voids of the section for treatment action by bacteria and oxidation.

Water passing through the filter section can pass directly into the top of a Rainstore³ chamber, or be collected and transported over larger distances via Draincore².

Only super fine sediments will pass through this section and be conveyed into the chamber. With relatively short storage times (24 to 48 hours) most of these sediments shall remain suspended, or be easily re-suspended by the next rain event for removal. Long-term accumulations to a depth affecting exfiltration rates can be measured in decades, not years.

Trash pickup from the surface requires that Zero be in quotes. Also be aware that grass surface porous pavements (Grasspave²) offer greater biological activity, but at a higher surface maintenance cost — mowing, fertilization and irrigation. Gravel surface porous pavements (Gravelpave²) still provide biological activity at a level lower than with grass, but with lower maintenance required.

Short Term Storage (Detention Basin)

Low, but Periodic, Maintenance

Use a structural form of catch basin with a deep sump prior to use of a hooded elbow inlet into the chamber. Whether standard catch basins or sophisticated cyclonic flow devices are used, the objective is to remove any coarse debris and sediment (sand and larger) from entering the Rainstore³ chamber. Periodic maintenance will be required to remove trash and sediment that accumulates in the device. Frequency shall depend upon the physical nature of sediments carried and allowed into the "screening" device.

Fine sediments may still be transported into the chamber via the inlet pipe and will likely be dispersed rather evenly over the entire chamber bottom surface area, where they will then settle

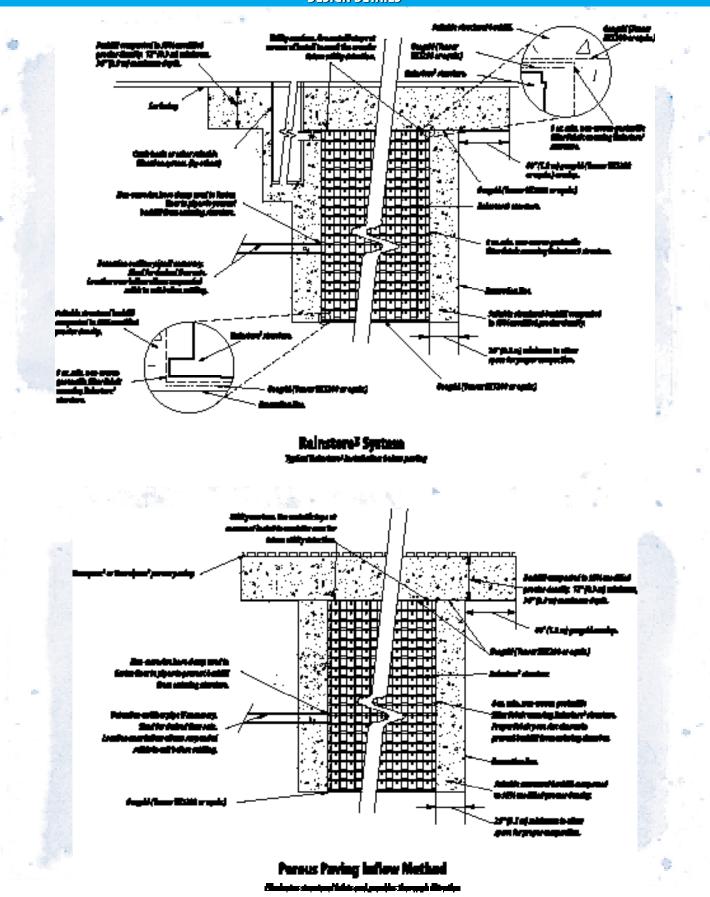
Eventually, especially if maintenance is too infrequent, the bottom of the chamber may develop a thick sediment layer sufficient to obstruct exfiltration through the bottom of the chamber. The sides of the chamber shall continue to function, but time for total water evacuation will increase.

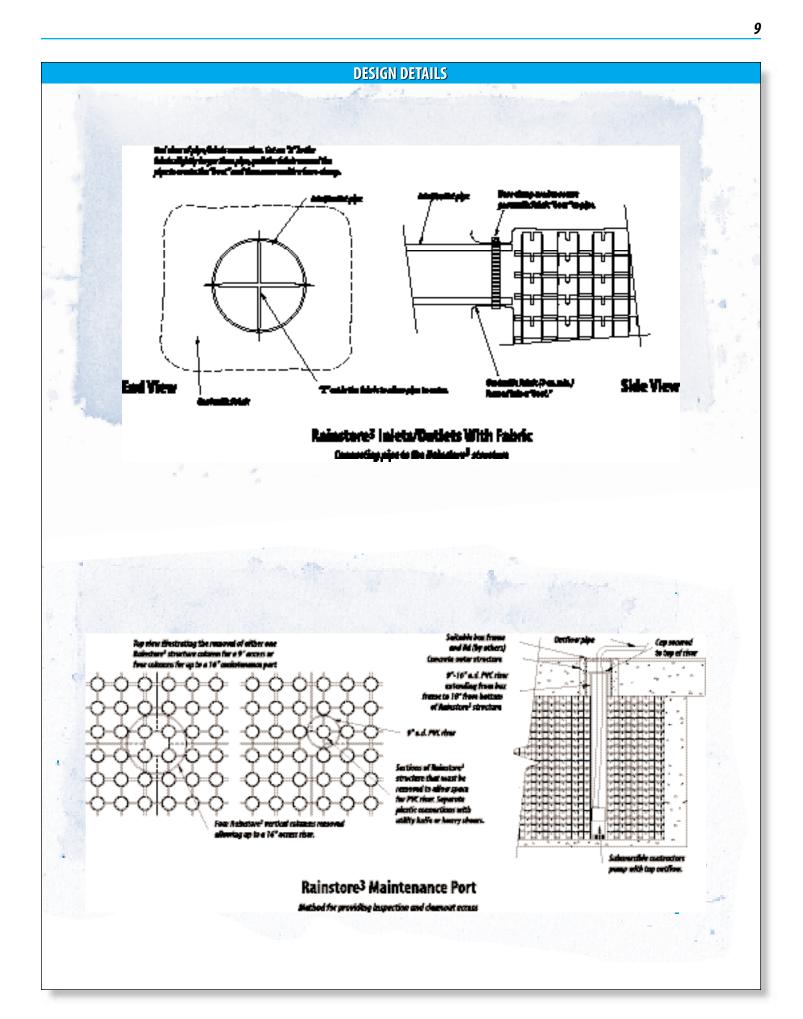
This approach is most closely related to more traditional design responses, but is not the best solution long term for the client. Standard catch basins are lowest initial cost, but much higher in maintenance cost. Commercial cyclonic devices may have lower maintenance cost, but offer higher levels of cleaning efficiency at much higher initial investment cost.

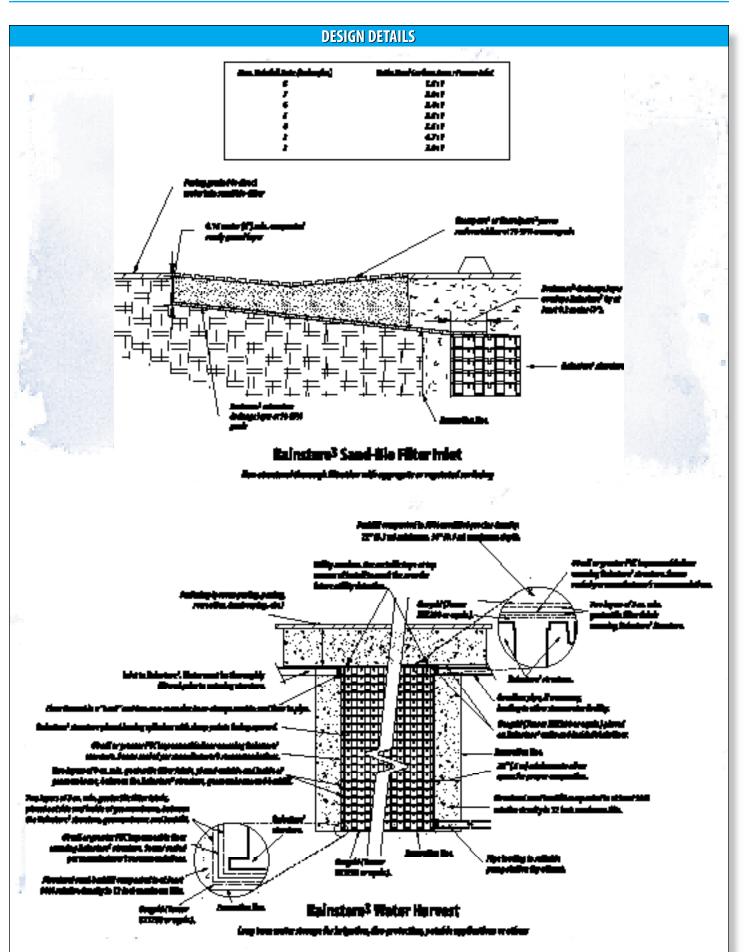
Long Term Storage (Water Harvest Basin) "Zero" Maintenance — the Preferred Method

Again, use a natural, or "Bio-Filter", inlet device – essentially a porous pavement or swale, to pre-filter trash and sediment laden runoff before capture and conveyance into a Rainstore³ chamber. Use of a simple 10-12" deep sand, or sand/gravel, filter pavement or swale will provide adequate vertical flow capacity (20 to 35+ inches per hour) and residence time to capture coarse debris and trash at the surface, with sediment and hydrocarbons (and even most traffic generated metals) kept in voids of the section for treatment action by bacteria and oxidation.

Water passing through the filter section can pass directly into the top of a Rainstore³ chamber, or be collected and transported over larger distances via Draincore².


to the bottom — depending upon the duration of time water is left in the chamber and the size of the particle. Particles smaller than the AOS of the porous fabric liner will pass through the liner and continue migration until stopped by underlying soils. Particles larger than the AOS shall remain inside the chamber, and can be periodically re-suspended by injecting high-pressure water into a Maintenance Port. with removal of the sediment laden water via sump pump from the same, or other, port.




Only super fine sediments will pass through this section and be conveyed into the chamber. With relatively short storage times (24 to 48 hours) most of these sediments shall be easily re-suspended by the next rain event for removal. This level of sediment can be safely captured and transported via pumps for water reuse in irrigation or gray water applications, or further filtered by an automatic sand filter device with "backflush" capabilities.

Below: Taller can be better for your design with 8.2 feet or 2.5 meters high versatility. H-20 loading capability allows use underneath all parking lots and a variety of structures.

DESIGN DETAILS

	Rainstore ³ Materials and Budgeting Worksheet Online version of the materials estimator available at: http://www.invisiblestructures.com/RS8/estimator.htm						
Item	Description	Formula	Quantity	Unit	\$/Unit	Budget Total \$	Notes
1	Required Water Volume (V_w)	-		m ³	N/A	N/A	Minimum agency requirements+client/site requirements
2	RS^3 Storage Volume (V _r)	$V_r = V_w /.94$		m ³			RS^3 is 94% void
3	Depth RS ³ (D)	see note		m	N/A	N/A	in meters (0.2, 0.3, 0.4, 0.6, 0.8, 1.2, and 2.4) in feet (0.7, 1.0, 1.3, 2.0, 2.6, 4.0, and 7.9)
4	$Length \ RS^3 \ (L)$	$\rm L{=}V_r/\rm H\times W$		m	N/A	N/A	Site dimensions, round up to nearest meter
5	Width RS ³ (W)	W=V _r /H \times L		m	N/A	N/A	Site dimensions, round up to nearest meter
6	Geotextile Fabric Area (A_{f}) for detention †	$\begin{array}{c} A_{f} \texttt{=} 2.1 \times ((L \times W) \texttt{+} \\ (L \times D \texttt{+} W \times D)) \end{array}$		m^2			Top+bottom+sides+5%, 8 oz. min., includes labor
7	Geogrid Area (A _g)	$\begin{array}{c} A_g \texttt{=}((L\texttt{+}1\texttt{ m})\times\\ (W\texttt{+}1\texttt{ m})/0.95)\times 3) \end{array}$		m^2			RS^3 area+1 meter on each side+5%, includes labor
8	Total Materials	Add items 1-8	N/A	\$	N/A		
9	Excavation Volume (V_e)	$\begin{array}{c} V_e\texttt{=}(D\texttt{+}0.4\text{ m})\times\\ (L\texttt{+}1\text{ m})\times(W\texttt{+}1\text{ m}) \end{array}$		m ³			Equipment, labor and hauling included
10	RS^3 installation labor (L _r)	$L_r = V_r / 15$		man-hours			Estimation assuming installation of 15m ³ /man-hour
11	Total*	Add items 9-11	N/A	\$	N/A		

 $^{\scriptscriptstyle \dagger}$ For harvesting applications, budget for twice the fabric area (A_f) and include cost for 40 mil PVC liner = A_f *Overhead and contingency expenses not included

USEFUL CONVERSIONS

1 gallon = .1337 ft ³ 1 gallon = .003785 m ³ 1 gallon = 3.7854 liters 1 inch = 2.54 cm	$1 \text{ ft}^2 = .0929 \text{ m}^2$ $1 \text{ m}^2 = 10.76 \text{ ft}^2$ $1 \text{ m}^2 = 1.196 \text{ yd}^2$ $1 \text{ acre} = 43,560 \text{ ft}^2$	1 m ³ = 264.15 gallons 1 m ³ = 35.314 ft ³ 1 m ³ = 1.308 yd ³ 1 yd ³ = .8361 m ³
1 cm = .3937 inches	$1 \text{ acre} = 4,047 \text{ m}^2$	$1 \text{ ton } @ 125/\text{ft}^3 = 16 \text{ ft}^3$
1 foot = .3048 m	1 acre foot = $1,233.5 \text{ m}^3$	$1 \text{ ton } @ 125/\text{ft}^3 = .593 \text{ yd}^3$
1 meter = 3.28 ft	$1 \text{ ft}^3 = .0283 \text{ m}^3$	$1 \text{ ton } @ 125/\text{ft}^3 = .453 \text{ m}^3$
	$1 \text{ ft}^3 = 7.48 \text{ gallons}$	

DESIGN AND TECHNICAL SUPPORT

Invisible Structures welcomes the opportunity to review project designs and answer technical questions. AutoCAD design details may be downloaded from our website. ISI staff is available for on-site construction guidance.

See a comprehensive list of project profiles with photos, project sizes, descriptions, locations, and designs on the web at www.invisiblestructures.com

CONTACT INFORMATION

Invisible Structures, Inc. 1600 Jackson Street, Suite 310 Golden, CO 80401 800-233-1510, 303-233-8383 overseas Fax 303-233-8282 www.invisiblestructures.com e-mail sales@invisiblestructures.com

LIMITED WARRANTY — RAINSTORE³

INVISIBLE STRUCTURES, INC., warrants to the Owner the structural integrity of Rainstore³ structures themselves when installed in accordance with Invisible Structures' written specifications at the time of installation. This warranty applies against defective materials for two (2) years from the date of purchase.

This warranty shall be the sole and exclusive warranty granted by Invisible Structures, Inc., and shall be the sole and exclusive remedy available to Owner. INVISIBLE STRUCTURES, INC., DISCLAIMS ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, THAT ARISE BY THE OPERATION OF LAW, SPECIFICALLY INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. INVISIBLE STRUCTURES, INC., SHALL NOT BE LIABLE FOR ANY INCIDENTAL OR CONSEQUENTIAL DAM-AGES WHICH MAY HAVE RESULTED FROM ANY ALLEGED BREACH OF WARRANTY.

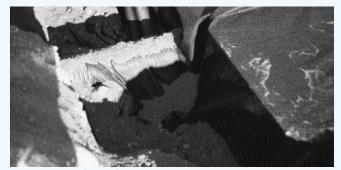
SPECIFICALLY EXCLUDED FROM WARRANTY COVERAGE ARE DAMAGES ARISING FROM ORDINARY WEAR AND TEAR; ALTERATION, ACCIDENT, MISUSE, ABUSE, OR NEGLECT, THE RAINSTORE³ STRUCTURE BEING SUBJECTED TO USES OTHER THAN THOSE PRESCRIBED IN INVISIBLE STRUC-TURES, INC.'S WRITTEN SPECIFICATIONS, OR ANY OTHER EVENT NOT CAUSED BY INVISIBLE STRUCTURES, INC.

Some states do not allow limitations on how long an implied warranty lasts or the exclusion or limitation of incidental or consequential damages, so the above limitations or exclusions may not apply to you. This warranty gives you specific legal rights, and you may also have other rights which vary from state to state.

Neither the sales personnel of the seller nor any other person is authorized to make any warranties other than those described herein or to extend the duration of any warranties beyond the time period described herein on behalf of Invisible Structures, Inc.

Should a defect appear in the warranty period, the Owner must inform Invisible Structures, Inc. of the defect in writing within ten (10) days of the discovery of the defect to the following address:

Kevin F. Wright, President Invisible Structures, Inc. 1600 Jackson Street, Suite 310 Golden, CO 80401


Invisible Structures, Inc., agrees to supply replacement Rainstore³ structures for those parts found by Invisible Structures, Inc., to be defective. THE COST OF REMOVAL OR INSTALLATION, OR A COMBINATION THEREOF, OF THE RAINSTORE³ STRUCTURE IS SPECIFICALLY EXCLUDED FROM THIS WARRANTY. Shipping costs shall be the responsibility of the Owner. Under no circumstances shall Invisible Structures, Inc. be liable to the Owner or to any third party for claims arising from the design of the Rainstore³ structure, shipment of the components of the Rainstore³ structure, or installation of the Rainstore³ structure.

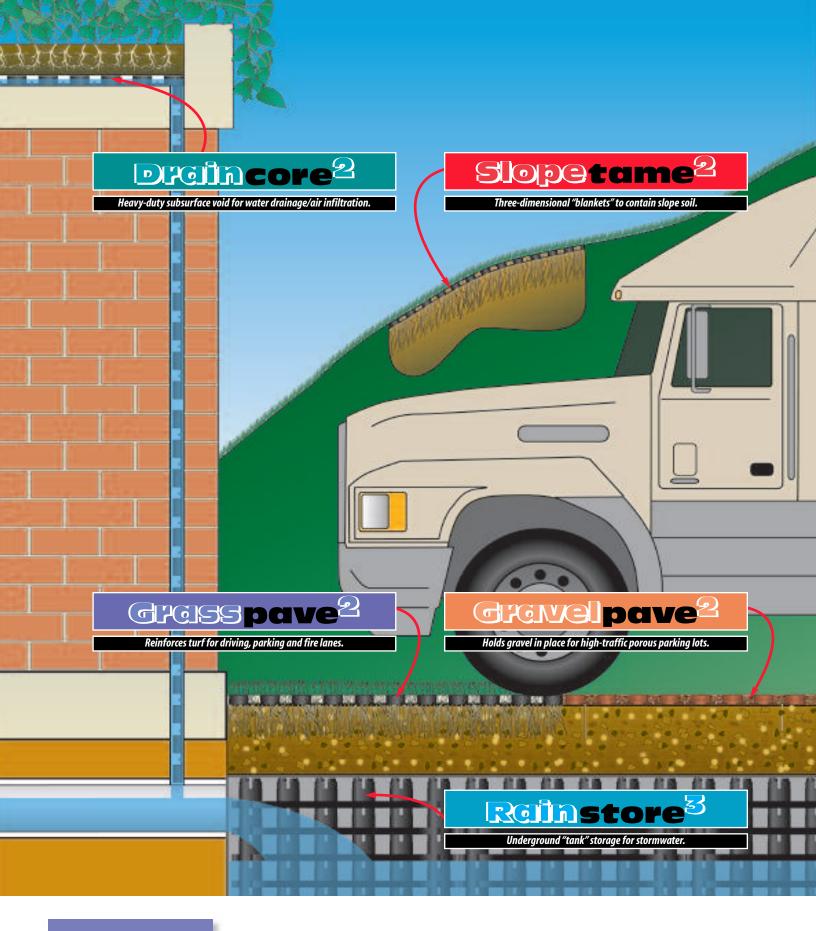
This warranty may not be amended except by a written instrument signed by an officer of Invisible Structures, Inc., at its corporate headquarters in Golden, Colorado. This warranty does not apply to any party other than to the Owner.

California Industrial Resources, Monroe, WA — Installation of Rainstore³

Moving stacks of product

Inlet boot connection detail

Filter fabric with geogrid placed on top


Backfill with roadbase prior to operating heavy machinery on Rainstore³ units

Left: Heavy equipment begins to put the cover material over an installed Rainstore³ chamber. Take extreme care when driving and/or compacting over the chamber and do not drive over exposed Rainstore³ units — wait until ALL the units are installed, the side backfill is complete, fabric and geogrid layers are completed, and an adequate amount of cover material is placed.

Below: A completed Rainstore³ installation at a chemical plant's loading dock in Chicago Heights, IL. Stormwater drains via multiple inlets to a Rainstore³ retention area beneath a concrete loading dock pad. The outflow into the city system is controlled by a shut off valve on a single 6" pipe. For safety, if there is a chemical spill, the valve can be closed, the contents can be pumped out, and the spill cleaned up.

Invisible Structures, Inc.

1600 Jackson Street, Suite 310, Golden, CO 80401 800-233-1510 • Fax: 800-233-1522 Overseas and locally: 303-233-8383 • Fax: 303-233-8282 www.invisiblestructures.com

Rainstore³ Patent No. 6,095,718. International Patents Apply Copyright © 2003-2005 Invisible Structures, Inc.